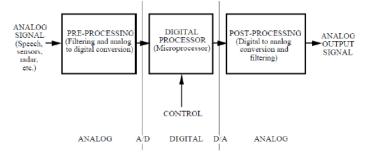
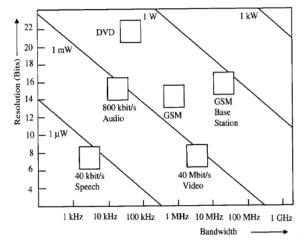
Electronics – A/D and D/A converters

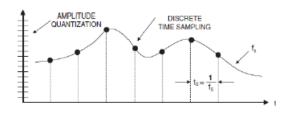

Prof. Márta Rencz, Gergely Nagy

BME DED

November 19, 2012


Introduction

- The world is analog, signal processing nowadays is digital.
- The transition between the two domains is done using analog-to-digital (A/D) and digital-to-analog (D/A) converters:
 - 1 the input signal is first processed (amplified and filtered),
 - 2 converted to a digital form (A/D conversion),
 - 3 the digital signal is processed
 - 4 and converted back to analog at the output (D/A conversion).



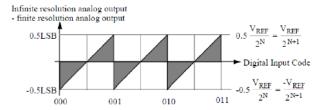
Resolution, bandwidth and energy

The higher the bandwidth or the resolution of a signal, the more energy it takes to convert it.

Sampling

In the course of the A/D conversion of an analog signal, samples are taken at a T_s interval.

The proximity of the digital function to the original analog one is a function of the **sampling frequency:**


$$f_s = \frac{1}{T_s}$$

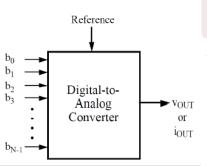
Nyquist-Shannon sampling theorem

If **highest frequency in the spectrum** of the input signal is f_{max} then it is **completely determined** by sampling its values at:

$$f_s \ge 2 \cdot f_{max}$$

Quantization error

Digital sampling introduces quantization error. It manifests as a low-level noise added to the reconstructed signal.


Signal-to-noise ratio (SNR)

$$SNR(dB) = 1.76 + 6.02 \cdot N dB \approx 6N dB$$

■ E.g. the theoretical SNR of a CD recording (16 bit):

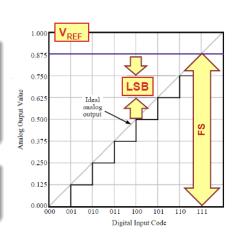
$$SNR_{CD} > 96 \, \mathrm{dB}$$

D/A conversion

$$V_{out} = \frac{V_{ref}}{2^N} \cdot B = V_{LSB} \cdot B$$

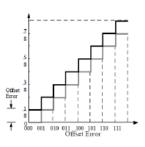
where

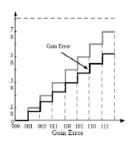
- lacksquare V_{ref} is the reference voltage,
- *N* is the resolution of the conversion,
- B is the binary value,
- V_{LSB} is the voltage that corresponds to the LSB value.

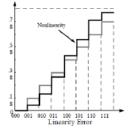

The ideal D/A converter

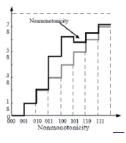
Full scale (FS)

$$V_{out,max} = \frac{V_{ref}}{2^N} (2^N - 1) = FS$$
$$V_{out,min} = 0$$

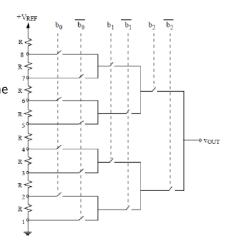

The LSB voltage

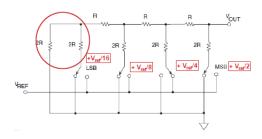

$$V_{LSB} = \frac{V_{ref}}{2^N}$$



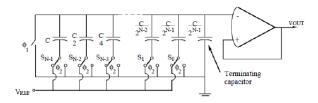

Errors of D/A converters:

- offset error,
- gain error,
- nonlinearity error,
- monotonieity error.





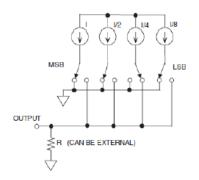
- The reference voltage is divided into 2^N parts.
- The bits of the binary value control switches that connect the right analog value to the output.
- This is an **analog multiplexer**.
- An analog switch can be realized using a CMOS transfer gate.
- It requires identical resistors.
- It is monotonic per construction.
- For N bits 2^N resistors a needed.

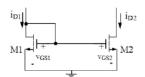


R-2R D/A converter

- It can be proven using the theorem of superposition that the voltage connected to the output when a switch is on corresponds to the binary weight.
- The advantage of this solution is that although accurate resistors are hard to realize in ICs, accurate resistance ratios can be very accurate.
- It contains resistors of value R merely (2R is realized with two Rs).
- For N bits 3N+1 resistors are needed.

Weighted capacitor D/A converter

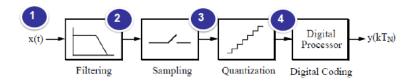



- In φ_1 phase every capacitor is discharged.
- lacksquare In the $arphi_2$ phase, if the input is
 - logic 1, the **reference voltage**,
 - logic 0, **ground potential**

is connected to the corresponding capacitor.

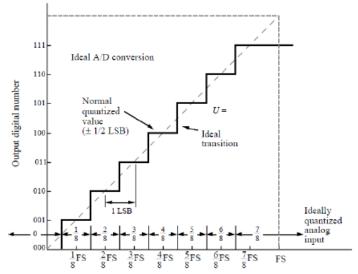
■ The capacitance of capacitors connected in parallel adds up.

Current switched D/A converter

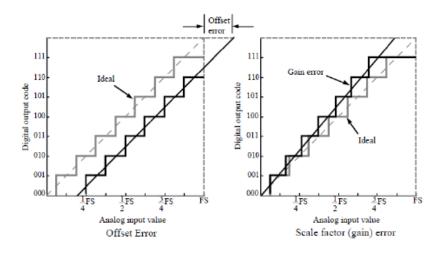


If the transistors are identical:

$$I_{D1} = I_{D2}$$

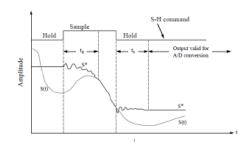

The currents are switched using current mirrors connected in parallel according to the binary weight.

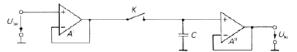
The process of A/D conversion


- \blacksquare Anti aliasing filter: a low-pass filter used to filter out components above f_{max}
- Sampling
- **3** Quantization
- Digital encoding

The ideal A/D converter

LSB: is the voltage corresponding to least significant bit.

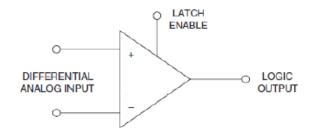

Errors of non-ideal A/D converters



The error types are similar to those of D/A converters.

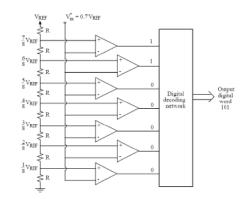
The sample and hold (S/H) circuit

- When switched on, the output copies the input voltage.
- When switched off, the last input value is held while an A/D conversion is performed.

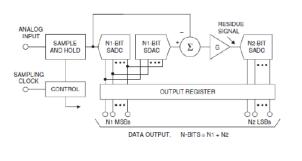


The value is held in the capacitor:

- by the time the switch is turned off, the capacitor is charged to V_{in} ,
- a voltage follower at the output ensures that the voltage of the capacitor is constant during the conversion.

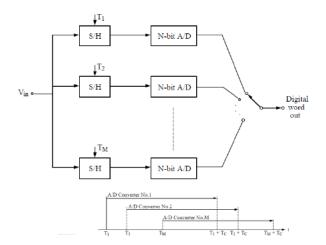

Comparator

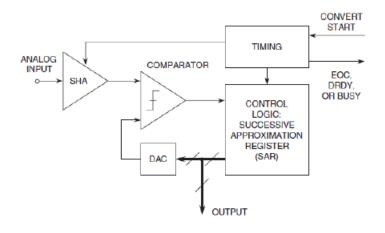
- A **comparator**'s output is
 - logic 1, if $V_{+} > V_{-}$,
 - lacksquare logic 0, if $V_+ < V_-$.
- It's symbol is the same as the operational amplifier's, but they are not the same.


Flash A/D converter

- The reference voltage is divided into 2^N parts.
- Comparators are used to compare each value in the divider with the input.
- The output of the comparators is a thermometric code:
 - the bits below the input value are logic 0,
 - the bits above it are logic1.

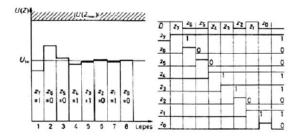
- This code needs to be converted to binary.
- For a resolution of N bits 2^N resistors are needed, thus these converters need a very large chip area they are fabricated with a resolution of 8-9 bits at most.

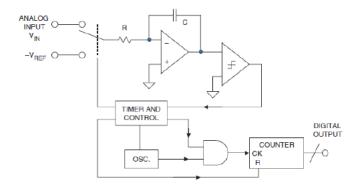

Cascaded flash A/D converter


- the high bits are converted,
- this value is subtracted from the input,
- the rest is converted using the other converter.
- The resolution is $N = N_1 + N_2$ bits.
- The length of the conversion: $t_{A/D} + t_{D/A} + t_{subtraction} + t_{A/D}$
- $lacksquare 2^{N_1} + 2^{N_2} 2$ converters needed instead of $2^{N_1 + N_2} 1$
- This is a trade-off between speed and chip area.

High-speed A/D conversion

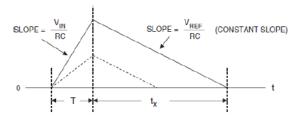
- M slow converters work in turns.
- lacksquare The overall sampling frequency can be increased M times.


Successive approximation D/A conversion I.


N bits are calculated in N steps.

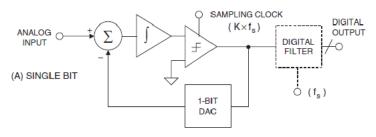
Successive approximation D/A conversion II.

- At the beginning of the conversion the MSB bit is 1, the rest is 0.
- The **input value** is **compared to the binary value** converted to analog by the D/A converter. ű
- If the DAC's output is bigger, the bit is set to zero, the one below it is set to 1.
- This is **done for every bit.**
- The length of the conversion: $N \cdot T_{step}$.

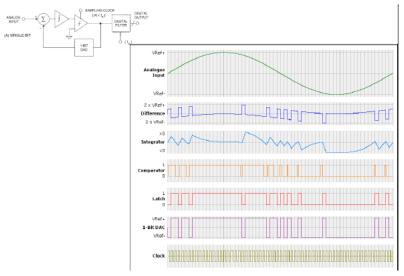


Dual-slope A/D conversion I.

- Sampling is very slow.
- Accuracy is high: 20 24 bits.


Dual-slope A/D conversion II.

- The input signal is connected to the input of the S/H, the output of the integrator is set to zero.
- 2 The conversion begins: the signal is integrated for a length of N_{ref} clock cycles.
- The negative reference voltage is connected to the input and the number of steps it takes (N_x) to discharge the capacitor is counted:


$$V_{in} = \frac{N_x}{N_{ref}} \cdot V_{ref}$$

Sigma-Delta $(\Sigma - \Delta)$ A/D converters I.

- This is a first order $\Sigma \Delta$ ADC.
- Oversampling: it samples at a much higher frequency than it it is required by the Shannon-Nyquist theorem. The quantization noise is spread in a much larger frequency range this way.
- It is less sensitive to devices inaccuracies easier to realize in an IC.
- Az example: 24-bit ADC for sound input $(0-20 \, \text{kHz})$: 5^{th} order, $64\times$ oversampling.

Sigma-Delta $(\Sigma - \Delta)$ A/D converters II.

Typical waveforms of a 1^{st} order $\Sigma - \Delta$ ADC